FIRST CASE OF RING–CHAIN TAUTOMERISM OF N-UNSUBSTITUTED 1,2,3,4-TETRAHYDROQUINAZOLINES

K. N. Zelenin¹, A. A. Potapov¹, I. V. Lagoda¹, V. V. Alekseev¹, J. Sinkkonen², and K. Pihlaja²

Keywords: ring-chain tautomerism, 1,2,3,4-tetrahydroquinazolines.

Göblyös et al. [1] have shown that ring-chain tautomerism is a characteristic feature of arylidene derivatives of 2-methylaminophenylamine with a substituent at the benzylic nitrogen atom. 1,2,3,4-Tetrahydroquinazoline structure has been assigned to the products of the reaction of aldehydes and ketones with 2-methylaminophenylamine [2, 3]. In previous work [4], we reported the tendency of imines of β -dicarbonyl compounds such as diketones, keto esters, and keto amides to exist as enamines. This suggested ring-chain tautomerism among the corresponding 2-methylaminophenylamine derivatives.

In the present communication, we report the first example of such tautomerism $A' \rightleftharpoons B$ for 3-(2-aminobenzylimino)-1-morpholin-4-yl-1-butanone (1), which is the product of the condensation of 2-methylaminophenylamine with acetoacetic acid morpholide.

NMR spectral data indicate the instantaneous establishment of the A' = B equilibrium. The signal for sp^3 -hybrid atom $C_{(2)}$ at 66.75 ppm serves as a characteristic feature for cyclic form **B**. Structure **A** should be eliminated due to the lack of a signal for the corresponding methylene group in the ¹H NMR spectrum. All the signals of the linear form are in complete accord with structure **A'**, which represents a *cis* isomer as indicated by NOE spectra. The nuclear Overhauser effect is observed for the signal of the C=C-H proton upon irradiation of the methyl protons, which indicates their *cis* orientation. Intramolecular hydrogen bonding between the NH proton and carbonyl group oxygen atom stabilizes the *cis* form. The nature of the solvent has a significant effect on the ratio of the tautomeric forms. The linear form predominates in DMSO-d₆, while the ring form predominates in CDCl₃. This phenomenon is well known for many tautomeric systems involving 1,3-dicarbonyl derivatives [4] (Scheme 1).

We should note that the A' = B equilibrium differs fundamentally from the tautomerism of 1-substituted 2-methylaminophenylamines [1], in which the imine form participates at the anilinic nitrogen atom rather than the benzylic nitrogen atom.

The NMR spectra were taken on a JEOL JNM-A-500 spectrometer. The ¹H NMR spectra were taken at 500 MHz and the ¹³C NMR spectra were taken at 125 MHz, in DMSO-d₆ at 30°C and in CDCl₃ at 25°C. The 1D measurements involved NOE and determination of the major parameters of these spectra. The homonuclear ¹H– ¹H correlations involved the phase-sensitive DQF-COSY method, while the ¹H–¹³C heteronuclear correlations were determined by the HMQC method (for correlations through one bond, $J_1 = 145$ MHz) and HMBC method (for correlations through two bonds, $J_{2,3} = 8$ Hz) with gradient selection. All the spectra were taken using standard pulse sequence sets.

¹ Military Medical Academy, 194044 St. Petersburg, Russia; e-mail: zelenin@infopro.spb.su. ² University of Turku, Turku, FIN-20014, Finland; e-mail: kpihlaja@utu.fi. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1305-1307, September, 2002. Original article submitted April 19, 2002.

Scheme 1

3-(2-Aminobenzylimino)-1-morpholin-4-yl-1-butanone (1) was obtained by the reaction of 2-aminomethylphenylamine (0.36 g, 3 mmol) with 1-morpholin-4-yl-1,3-butanedione (0.78 g, 3 mmol) in methanol (10 ml). The reaction mixture was maintained for 24 h at ~20°C. The solvent was removed in vacuum without heating and the residue was recrystallized from 1:1 hexane–benzene to give compound 1 in 72% yield; mp 146-148°C (1:1 hexane-benzene), R_f 0.37 on Silufol UV-254 plate with methanol as eluent. Form A': ¹H NMR spectrum (DMSO-d₆), δ , ppm, J (Hz): 1.90 (3H, s, CH₃); 3.35 (4H, m, N-CH₂); 3.51 (4H, m, O-CH₂); 4.21 (2H, d, J = 5.8, 4-H); 4.73 (1H, s, =CH); 4.94 (2H, br. s, 1-NH₂); 6.53 (1H, t, 6-H); 6.64 (1H, d, 8-H); 6.96 (1H, t, 7-H); 9.61 (1H, t, J = 5.8, 3-NH). ¹³C NMR spectrum (DMSO-d₆); δ , ppm: 19.38 (CH₃); 42.52 (C₍₄₎); 42.99 (2C, N–CH₂); 66.18 (2C, O–CH₂); 80.99 (=CH); 114.84 (C₍₈₎); 116.09 (C₍₆₎); 122.16 (C_(4a)); 127.49 (C₍₇₎); 127.68 (C₍₅₎); 145.82 (C_(8a)); 159.88 (C₍₂₎); 169.22 (C=O). Form **B**: ¹H NMR spectrum in DMSO-d₆, δ, ppm: 1.29 (3H, s, CH₃); 2.58 (2H, s, CH₂); 3.43 and 3.46 (4H, m, N-CH₂); 3.51 (4H, m, O-CH₂); 3.80 (2H, s, 4-H); 5.70 (1H, br. s, 1-NH); 6.44 (1H, d, 8-H); 6.47 (1H, t, 6-H); 6.81 (1H, d, 5-H); 6.87 (1H, t, 7-H). The signal for 3-NH proton was not observed. ¹³C NMR spectrum in DMSO-d₆, δ , ppm: 26.03 (CH₃); 41.23 (C₍₄₎ or CH₂); 41.26 (C₍₄₎) or CH₂); 45.94 (2C, N–CH₂); 65.38 (C₍₂₎); 66.01 (2C, O–CH₂); 114.22 (C₍₈₎); 115.63 (C₍₆₎); 119.44 (C_(4a)); 125.59 (C₍₅₎); 126.56 (C₍₇₎); 143.01 (C_{(8a})); 168.95 (C=O). Found, %: C 68.81; H 8.96; N 16.11. C₁₅H₂₃N₃O. Calculated, %: C 68.93; H 8.87; N 16.08.

REFERENCES

- 1. A. Göblyös, L. Lizar, and F. Fülöp, *Tetrahedron*, **58**, 1011 (2002).
- 2. G. Kempter, H.-J. Ziegner, G. Moser, and W. Natho, *Wiss. Z. Paedagog. Hochsch.*, Karl Liebknecht, Potsdam, **21**, 5 (1977).
- 3. G. Kempter, W. Ehrlichmann, M. Plesse, and H.-U. Lehm, J. Prakt. Chem., 324, 832 (1982).
- 4. S. I. Yakimovich and K. N. Zelenin, *Zh. Obshch. Khim.*, **65**, 705 (1995).